Started on Sunday, 10 January 2021, 9:53 AM
State Finished
Completed on Sunday, 10 January 2021, 11:07 AM
Time taken 1 hour 14 mins
Grade 25.00 out of 32.00 ($\mathbf{7 8 \%}$)

Question 1
Correct
Mark 1.00 out of 1.00

Let $E=[2+x, 3-x], F=[1, x]$ be ordered bases for P_{2}. The transition matrix from E to F is

Select one:
a. $\left(\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right)$
b. $\left(\begin{array}{cc}1 & -1 \\ 3 & 2\end{array}\right)$
c. $\left(\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right)$
od. $\left(\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right)$
\checkmark

The correct answer is: $\left(\begin{array}{cc}2 & 3 \\ 1 & -1\end{array}\right)$

Question 2
Incorrect
Mark 0.00 out of 1.00

Let A be a 4×5-matrix, with $\operatorname{rank}(A)=3$. Then The rows of A are linearly dependent.

Select one:
a. True
() b. False \boldsymbol{x}

The correct answer is: True

Question 3
Correct
Mark 1.00 out of 1.00

Let V be a vector space of dimension 4 and $W=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ a set of nonzero vectors of V, then Select one:
© a. W is linearly dependent
b. W is a basis
c. W is a spanning set
d. W is linearly independent

The correct answer is: W is linearly dependent

Question 4
Correct
Mark 1.00 out of 1.00

Let $S=\left\{p(x)=a x^{2}+b x+c \in P_{3}: \int_{0}^{1} p(x) d x=0\right\}$. The dimension of S is.

Select one:
a. 1
b. 3
(C. 2
d. 4

The correct answer is: 2

Question 5

Correct
Mark 1.00 out
of 1.00
The vectors $\left\{(1,-1,1)^{T},(1,-3,2)^{T},(1,-2,0)^{T}\right\}$ form a basis for \mathbb{R}^{3}.
Select one:
a. False
© b. True

The correct answer is: True

Question 6
Correct
Mark 1.00 out of 1.00

Let $S=\{f \in C[-1,1]: f$ is an odd function $\}$, then S is a subspace of $C[-1,1]$.
Select one:
O a. True V
b. False

The correct answer is: True

Question 7
Correct
Mark 1.00 out
of 1.00
Let A be a 2×4 matrix, and $\operatorname{rank}(A)=2$, then, the columns of A form a spanning set for \mathbb{R}^{2}.
Select one:
a. False
© b. True

The correct answer is: True

Question 8
let A be a 4×7-matrix, if the row echelon form of A has 2 nonzero rows, then $\operatorname{dim}($ column space of A) is
a. 7
(b. 2 -
c. 3
d. 5

Question 9
Incorrect
Mark 0.00 out
of 1.00
If A is a 3×3-matrix, and $A x=0$ has only the zero solution, then $\operatorname{nullity}(A)=$
Select one:
ค. 0
(0) b. 3
\times
c. 2
od. 1

The correct answer is: 0

Question 10
Incorrect
Mark 0.00 out of 1.00

If A is a nonzero 4×2-matrix and $A x=0$ has infinitely many solutions, then $\operatorname{rank}(A)=$ Select one:
a. 4
(o) b. 2
\times
c. 1
od. 3

The correct answer is: 1

Question 11
If A is an $n \times n$ singular matrix, then
Correct
Mark 1.00 out
of 1.00
Select one:
a. The rows of A are linearly independent
b. $N(A)=\{0\}$

- c. The columns of A are linearly dependent
d. $\operatorname{rank}(A)=n$

The correct answer is: The columns of A are linearly dependent

Question 12
Correct
Mark 1.00 out of 1.00

The vectors $\left\{x^{2}+2 x+1, x-1, x^{2}+x+1\right\}$ form a basis for P_{3}.
Select one:
a. False
© b. True \vee

The correct answer is: True

Question 13
Incorrect
Mark 0.00 out of 1.00

Let $S=\left\{\left(\begin{array}{c}a+b+2 c \\ a+2 c \\ a+b+2 c\end{array}\right): a, b \in \mathbb{R}\right\}$. Then dimension of S equals
Select one:
a. 1
(o) b. 3
\times
c. 2
d. 0

The correct answer is: 2

Question 14
Correct
Mark 1.00 out of 1.00
dimension of the subspace $S=\operatorname{Span}\left\{A_{1}=\left(\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right), A_{2}\left(\begin{array}{cc}0 & -1 \\ 1 & 3\end{array}\right), A_{3}=\left(\begin{array}{cc}-3 & -8 \\ -1 & 6\end{array}\right)\right\}$ is Select one:
a. 3
(o) b. 2
c. 0
d. 1

The correct answer is: 2

Question 15
Correct
Mark 1.00 out of 1.00

If A is an $n \times n$-matrix and for each $b \in \mathbb{R}^{n}$ the system $A x=b$ has a unique solution, then Select one:
a. A is singular
(b. b. A is nonsingular
c. $\operatorname{rank}(A)=n-1$
d. $\operatorname{nullity}(A)=1$

The correct answer is: A is nonsingular

Question 16
Let A be a 4×3 matrix, and nullity $(A)=0$, then
Correct
Mark 1.00 out of 1.00

Select one:
a. The rows of A are linearly independent
b. the columns of A form a basis for \mathbb{R}^{4}
c. $\operatorname{rank}(A)=1$
(d. The columns of A are linearly independent

Question 17
Correct
Mark 1.00 out
of 1.00

Let A be a 4×6 matrix, and nullity $(A)=2$, then the system $A x=b$ has infinite number of solutions for every $b \in \mathbb{R}^{4}$.

Select one:
© a. True \checkmark
b. False

The correct answer is: True

Question 18
Correct
Mark 1.00 out of 1.00

Let V be a vector space, $v_{1}, v_{2}, \ldots v_{n} \in V$ be linearly independent, and $v \in V$, then the vectors $v_{1}, v_{2}, \ldots v_{n}, v$ are linearly independent.

Select one:
© a. Falseb. True

The correct answer is: False

Question 19
Let v_{1}, v_{2} be linearly dependent in a vector space $V, V=\operatorname{Span}\left(v_{1}, v_{2}\right)$, then $\operatorname{dim}(V)=2$
Correct
Mark 1.00 out of 1.00

Select one:

- a. Trueb. False

The correct answer is: False
Question 20
Correct
Mark 1.00 out of 1.00
$\operatorname{dim}\left(\operatorname{span}\left(x^{2}, 3+x^{2}, x^{2}+1\right)\right)$ is
Select one:

- a. 3
-b. 0
(-) c. 2
\checkmark
d. 1

The correct answer is: 2

Question 21
Incorrect
Mark 0.00 out of 1.00

If $T_{n \times n}$ is a transition matrix between two bases for a vector space V, $\operatorname{dim}(V)=n>0$, then
Select one:
(a. $\operatorname{rank}(T)=1$
\times
b. $\operatorname{nullity}(T)=n$
c. T is nonsingular
d. $\operatorname{det}(T)=1$

Question 22
Incorrect
Mark 0.00 out of 1.00

If A is a 3×2 matrix, then
Select one:
a. The columns of A are linearly independent
© b. The columns of A are linearly dependent
\times
c. The rows of A are linearly dependent
d. $\operatorname{Rank}(A)=3$

The correct answer is: The rows of A are linearly dependent

Question 23
Correct
Mark 1.00 out of 1.00 $U=\left[u_{1}=\binom{2}{3}, u_{2}=\binom{1}{2}\right]$ is

The transition matrix from the standard basis $S=\left[e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}\right]$ to the ordered basis

Select one:
a. $T=\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)$

- b. $T=\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)$
c. $T=\left(\begin{array}{cc}-2 & 1 \\ 3 & -2\end{array}\right)$
d. $T=\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right)$

The correct answer is: $T=\left(\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right)$

Let $E=\left[2+x, 1-x, x^{2}+1\right]$ be an ordered basis for P_{3}. If $p(x)=2 x^{2}+6 x+5$, then the coordinate vector of $p(x)$ with respect to E is

Select one:
a. $\left(\begin{array}{c}2 \\ -3 \\ 3\end{array}\right)$

- b. $\left(\begin{array}{c}3 \\ -3 \\ 2\end{array}\right)$
c. $\left(\begin{array}{c}3 \\ 2 \\ -3\end{array}\right)$
d. $\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right)$

The correct answer is: $\left(\begin{array}{c}3 \\ -3 \\ 2\end{array}\right)$

Question 25
Correct
Mark 1.00 out
of 1.00

Let A be a 3×5 matrix, and nullity $(A)=3$, then the rows of A are linearly independent
Select one:

- a. False \downarrowb. True

The correct answer is: False

Question 26
Correct
Mark 1.00 out of 1.00
if $\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ is a spanning set for $\mathbb{R}^{3 \times 2}$, then
Select one:
a. $k=6$
b. $k>6$
(o) c. $k \geq 6$
\checkmark
d. $k \leq 6$

The correct answer is: $k \geq 6$

Question 27

Correct
Mark 1.00 out of 1.00

If $A=\left(\begin{array}{cccc}1 & 2 & -1 & 0 \\ -1 & -2 & 2 & 0 \\ 2 & 4 & 0 & 0\end{array}\right)$, then $\operatorname{rank}(A)=3$.
Select one:

- a. True
© b. False

The correct answer is: False

Question 28
Incorrect
Mark 0.00 out of 1.00

If A is an $m \times n$-matrix, $m \neq n$, then either the rows or the columns of A are linearly independent Select one:
a. False
(b. True \boldsymbol{x}

The correct answer is: False

Question 29
Correct
Mark 1.00 out of 1.00

Let $S=\left\{\binom{x}{y} \in \mathbb{R}^{2}: x=-y\right\}$, then S is a subspace of \mathbb{R}^{2}.
Select one:

- a. True
b. False

The correct answer is: True

Question 30

Correct

Mark 1.00 out
of 1.00

The coordinate vector of $8+6 x$ with respect to the basis $[2,2 x]$ is $(4,3)^{T}$
Select one:a. Falseb. True

The correct answer is: True

Question 31
If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for a vector space V, then the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is

Correct

Mark 1.00 out
of 1.00
Select one:
a. linearly independent and a spanning set for V.
(0) b. linearly independent and not a spanning set for V.
c. linearly dependent and not a spanning set for V.
d. linearly dependent and a spanning set

The correct answer is: linearly independent and not a spanning set for V.

Question 32

Correct
Mark 1.00 out of 1.00

The nullity of $A=\left(\begin{array}{ccccc}1 & 4 & 1 & 2 & 1 \\ 0 & 6 & -1 & 2 & -1 \\ 3 & 10 & 0 & 4 & 1\end{array}\right)$ is
Select one:
(a) 2
b. 1
c. 3
-d. 4

The correct answer is: 2

