<u>Dashboard</u> / My courses / <u>INTRODUCTION TO LINEAR ALGEBRA-Lecture-1201-Meta</u> / <u>General</u> / <u>Second Exam</u>

Started on Sunday, 10 January 2021, 9:53 AM

State Finished

Completed on Sunday, 10 January 2021, 11:07 AM

Time taken 1 hour 14 mins

Grade 25.00 out of 32.00 (78%)

Question 1

Correct

Mark 1.00 out
of 1.00

Let E=[2+x,3-x] , F=[1,x] be ordered bases for $P_2.$ The transition matrix from E to F is

Select one:

$$\bigcirc$$
 a. $\begin{pmatrix} 2 & 1 \ 3 & -1 \end{pmatrix}$

$$\bigcirc$$
 b. $\begin{pmatrix} 1 & -1 \ 3 & 2 \end{pmatrix}$

$$\bigcirc$$
 c. $\begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$

The correct answer is: $\begin{pmatrix} 2 & 3 \\ 1 & -1 \end{pmatrix}$

Question 2

Incorrect

Mark 0.00 out of 1.00

Let A be a 4 imes 5-matrix, with $\mathrm{rank}(A)=3$. Then The rows of A are linearly dependent.

Select one:

a. True

b. False X

The correct answer is: True

Question **3**

Correct

Mark 1.00 out of 1.00

Let V be a vector space of dimension 4 and $W=\{v_1,v_2,v_3,v_4,v_5\}$ a set of nonzero vectors of V , then

Select one:

lacksquare a. W is linearly dependent

~

 \circ b. W is a basis

 \circ c. W is a spanning set

 \circ d. W is linearly independent

The correct answer is: W is linearly dependent

Correct

Mark 1.00 out of 1.00

Let
$$S=\left\{p(x)=ax^2+bx+c\in P_3:\int\limits_0^1p(x)\;dx=0
ight\}$$
 . The dimension of S is.

Select one:

- \circ a. 1
- O b. 3
- \odot c. 2
 - **~**
- \circ d. 4

The correct answer is: 2

Question **5**

Correct

Mark 1.00 out of 1.00

The vectors $\{(1,-1,1)^T,(1,-3,2)^T,(1,-2,0)^T\}$ form a basis for \mathbb{R}^3 .

Select one:

- a. False
- b. True

The correct answer is: True

Question 6

Correct
Mark 1.00 out
of 1.00

Let $S = \{f \in C[-1,1] : f ext{ is an odd function } \}$, then S is a subspace of C[-1,1] .

Select one:

- a. True
- b. False

The correct answer is: True

Question **7**

Correct

Mark 1.00 out of 1.00

Let A be a 2 imes 4 matrix, and $\mathrm{rank}(A) = 2$, then, the columns of A form a spanning set for \mathbb{R}^2 .

Select one:

- a. False
- b. True

The correct answer is: True

Question 8

Correct

Mark 1.00 out of 1.00

let A be a 4×7 -matrix, if the row echelon form of A has 2 nonzero rows, then dim(column space of A) is

Select one:

- a. 7
- b. 2

 ✓
- O c. 3
- O d. 5

The correct answer is: 2

Incorrect

Mark 0.00 out of 1.00

If A is a 3 imes 3-matrix, and Ax=0 has only the zero solution, then $\operatorname{\mathsf{nullity}}(A)=$

Select one:

- \circ a. 0
- \odot b. 3
 - ×
- \circ c. 2
- \circ d. 1

The correct answer is: 0

Question 10

Incorrect

Mark 0.00 out of 1.00

If A is a nonzero 4 imes 2-matrix and Ax = 0 has infinitely many solutions, then $\operatorname{rank}(A) =$

Select one:

- \circ a. 4
- b. 2
 - ×
- \circ c. 1
- \bigcirc d. 3

The correct answer is: 1

Question 11

Correct

Mark 1.00 out of 1.00

If A is an n imes n singular matrix, then

Select one:

- igcup a. The rows of A are linearly independent
- ${\mathbb O}$ b. $N(A)=\{0\}$
- $\ igcup$ c. The columns of A are linearly dependent

~

 ${\mathbb Q}$ d. ${\sf rank}(A)=n$

The correct answer is: The columns of A are linearly dependent

Question **12**

Correct

Mark 1.00 out of 1.00

The vectors $\{x^2+2x+1,x-1,x^2+x+1\}$ form a basis for P_3 .

Select one:

- a. False
- b. True

The correct answer is: True

Incorrect

Mark 0.00 out of 1.00

Let
$$S=\{egin{pmatrix} a+b+2c\ a+2c\ a+b+2c \end{pmatrix}: a,b\in\mathbb{R}\}.$$
 Then dimension of S equals

Select one:

- \circ a. 1
- b. 3
 - ×
- \circ c. 2
- \bigcirc d. 0

The correct answer is: 2

Question 14

Correct

Mark 1.00 out of 1.00

dimension of the subspace $S=\operatorname{Span}\left\{A_1=\begin{pmatrix}1&2\\1&0\end{pmatrix},A_2\begin{pmatrix}0&-1\\1&3\end{pmatrix},A_3=\begin{pmatrix}-3&-8\\-1&6\end{pmatrix}\right\}$ is

Select one:

- \circ a. 3
- b. 2
 - ~
- \circ c. 0
- \circ d. 1

The correct answer is: 2

Question 15

Correct

Mark 1.00 out of 1.00

If A is an n imes n-matrix and for each $b \in \mathbb{R}^n$ the system Ax = b has a unique solution, then

Select one:

- igcup a. A is singular
- $\ igotimes$ b. A is nonsingular

~

- \bigcirc c. rank(A)=n-1
- igcup d. $\mathsf{nullity}(A) = 1$

The correct answer is: A is nonsingular

Question 16

Correct

Mark 1.00 out of 1.00

Let A be a 4 imes 3 matrix, and $\mathsf{nullity}(A) = 0$, then

Select one:

- igcup a. The rows of A are linearly independent
- igcirc b. the columns of A form a basis for \mathbb{R}^4
- ${\mathbb C}$ c. ${\sf rank}(A)=1$
- lacktriangledown d. The columns of A are linearly independent

~

The correct answer is: The columns of \boldsymbol{A} are linearly independent

Correct
Mark 1.00 out

of 1.00

Let A be a 4×6 matrix, and $\operatorname{nullity}(A) = 2$, then the system Ax = b has infinite number of solutions for every $b \in \mathbb{R}^4$.

Select one:

- a. True
- b. False

The correct answer is: True

Question 18

Correct

Mark 1.00 out of 1.00

Let V be a vector space, $v_1,v_2,\ldots v_n\in V$ be linearly independent, and $v\in V$, then the vectors $v_1,v_2,\ldots v_n,v$ are linearly independent.

Select one:

- a. False
- b. True

The correct answer is: False

Question 19

Correct

Mark 1.00 out of 1.00

Let v_1,v_2 be linearly dependent in a vector space V , $V=\operatorname{\mathsf{Span}}(v_1,v_2)$, then $\dim(V)=2$

Select one:

- a. True
- b. False

The correct answer is: False

Question 20

Correct

Mark 1.00 out of 1.00

 $\dim \left(\operatorname{span}(x^2,3+x^2,x^2+1)\right)$ is

Select one:

- \circ a. 3
- b. 0
- © c. 2
- ~
- \circ d. 1

The correct answer is: 2

Question 21

Incorrect

Mark 0.00 out of 1.00

If $T_{n imes n}$ is a transition matrix between two bases for a vector space V , $\dim(V) = n > 0$, then

Select one:

- ${\color{red} lacksymbol{ ilde{O}}}$ a. ${
 m rank}(T)=1$
 - ×
- \bigcirc b. $\operatorname{nullity}(T) = n$
- \circ c. T is nonsingular
- \circ d. $\det(T)=1$

The correct answer is: T is nonsingular

Incorrect

Mark 0.00 out of 1.00

If A is a 3 imes 2 matrix, then

Select one:

- igcup a. The columns of A are linearly independent
- lacksquare b. The columns of A are linearly dependent

×

- \circ c. The rows of A are linearly dependent
- igcup d. Rank(A)=3

The correct answer is: The rows of A are linearly dependent

Question 23

Correct

Mark 1.00 out of 1.00

The transition matrix from the standard basis $S=\left[e_1=\left(1\atop 0\right),e_2=\left(0\atop 1\right)\right]$ to the ordered basis

$$U=\left[u_1=\left(rac{2}{3}
ight),u_2=\left(rac{1}{2}
ight)
ight]$$
 is

Select one:

$$\bigcirc$$
 a. $T=egin{pmatrix}2&1\3&2\end{pmatrix}$

$$lacksquare$$
 b. $T=\left(egin{array}{cc} 2 & -1 \ -3 & 2 \end{array}
ight)$

~

$$\bigcirc$$
 c. $T=\left(egin{array}{cc} -2 & 1 \ 3 & -2 \end{array}
ight)$

$$\bigcirc$$
 d. $T=egin{pmatrix} 2 & 3 \ 1 & 2 \end{pmatrix}$

The correct answer is: $T=\left(egin{array}{cc} 2 & -1 \ -3 & 2 \end{array}
ight)$

Question 24

Correct

Mark 1.00 out of 1.00

Let $E=[2+x,1-x,x^2+1]$ be an ordered basis for P_3 . If $p(x)=2x^2+6x+5$, then the coordinate vector of p(x) with respect to E is

Select one:

$$\bigcirc$$
 a. $\begin{pmatrix} 2 \\ -3 \\ 3 \end{pmatrix}$

$$lacksquare$$
 b. $\left(egin{array}{c} 3 \\ -3 \\ 2 \end{array}
ight)$

~

$$\circ c. \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$$

$$\bigcirc$$
 d. $\begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}$

The correct answer is: $egin{pmatrix} 3 \ -3 \ 2 \end{pmatrix}$

Correct

Mark 1.00 out of 1.00

Let A be a 3 imes 5 matrix, and $\operatorname{nullity}(A) = 3$, then the rows of A are linearly independent

Select one:

- a. False
- b. True

The correct answer is: False

Question 26

Correct

Mark 1.00 out of 1.00

if $\{v_1, v_2, \cdots, v_k\}$ is a spanning set for $\mathbb{R}^{3 imes 2}$, then

Select one:

- \circ a. k=6
- \bigcirc b. k>6
- left c. $k\geq 6$

 \circ d. $k \leq 6$

The correct answer is: $k \geq 6$

Question 27

Correct

Mark 1.00 out of 1.00

If
$$A=egin{pmatrix}1&2&-1&0\-1&-2&2&0\2&4&0&0\end{pmatrix}$$
 , then $\mathrm{rank}(A)=3.$

Select one:

- a. True
- b. False

 ✓

The correct answer is: False

Question 28

Incorrect

Mark 0.00 out of 1.00

If A is an m imes n-matrix, m
eq n, then either the rows or the columns of A are linearly independent

Select one:

- a. False
- b. True X

The correct answer is: False

Question 29

Correct

Mark 1.00 out of 1.00

Let
$$S=\{inom{x}{y}\in\mathbb{R}^2: x=-y\}$$
 , then S is a subspace of \mathbb{R}^2 .

Select one:

- a. True
- b. False

The correct answer is: True

Correct

Mark 1.00 out of 1.00

The coordinate vector of 8+6x with respect to the basis [2,2x] is $(4,3)^T$

Select one:

- a. False
- b. True

 ✓

The correct answer is: True

Question 31

Correct

Mark 1.00 out of 1.00

If $\{v_1,v_2,v_3,v_4\}$ is a basis for a vector space V , then the set $\{v_1,v_2,v_3\}$ is

Select one:

- igcup a. linearly independent and a spanning set for V.
- lacksquare b. linearly independent and not a spanning set for V.

- \circ c. linearly dependent and not a spanning set for V.
- od. linearly dependent and a spanning set

The correct answer is: linearly independent and not a spanning set for V.

Question **32**

Correct

Mark 1.00 out of 1.00

The nullity of
$$A=egin{pmatrix} 1 & 4 & 1 & 2 & 1 \ 0 & 6 & -1 & 2 & -1 \ 3 & 10 & 0 & 4 & 1 \end{pmatrix}$$
 is

Select one:

lacksquare a. 2

- 0 b. 1
- \circ c. 3
- \circ d. 4

The correct answer is: 2

Jump to...

Announcements ▶

<u>Data retention summary</u>